Real orientations, real Gromov-Witten theory, and real enumerative geometry

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real Orientations, Real Gromov-Witten Theory, and Real Enumerative Geometry

The present note overviews our recent construction of real Gromov-Witten theory in arbitrary genera for many real symplectic manifolds, including the odd-dimensional projective spaces and the renowned quintic threefold, its properties, and its connections with real enumerative geometry. Our construction introduces the principle of orienting the determinant of a differential operator relative to...

متن کامل

Real Gromov-Witten Theory in All Genera and Real Enumerative Geometry: Properties

The first part of this work constructs positive-genus real Gromov-Witten invariants of realorientable symplectic manifolds of odd “complex” dimensions; the present part focuses on their properties that are essential for actually working with these invariants. We determine the compatibility of the orientations on the moduli spaces of real maps constructed in the first part with the standard node...

متن کامل

Real Gromov-Witten Theory in All Genera and Real Enumerative Geometry: Construction

We construct positive-genus analogues of Welschinger’s invariants for many real symplectic manifolds, including the odd-dimensional projective spaces and the renowned quintic threefold. In some cases, our invariants provide lower bounds for counts of real positive-genus curves in real algebraic varieties. Our approach to the orientability problem is based entirely on the topology of real bundle...

متن کامل

Real Gromov-Witten Theory in All Genera and Real Enumerative Geometry: Computation

The first part of this work constructs positive-genus real Gromov-Witten invariants of realorientable symplectic manifolds of odd “complex” dimensions; the second part studies the orientations on the moduli spaces of real maps used in constructing these invariants. The present paper applies the results of the latter to obtain quantitative and qualitative conclusions about the invariants defined...

متن کامل

Orientability in Real Gromov-Witten Theory

The orientability problem in real Gromov-Witten theory is one of the fundamental hurdles to enumerating real curves. In this paper, we describe topological conditions on the target manifold which ensure that the uncompactified moduli spaces of real maps are orientable for all genera of and for all types of involutions on the domain. In contrast to the typical approaches to this problem, we do n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Research Announcements in Mathematical Sciences

سال: 2017

ISSN: 1935-9179

DOI: 10.3934/era.2017.24.010